I. Undergraduate Programs

1. What do you believe are the most distinctive aspects of your major?
 The high intellectual level of our major courses and the broad preparation for careers in education, industry and research.

2. What do you know about where your graduates go after graduation, how do you find out, and what do you do with the information?
 Secondary education, industry, actuarial sciences and graduate schools.

3. Does your department/program offer educational opportunities beyond the classroom?
 Yes. Our undergraduate teaching assistant program is very popular.

4.

5.

6. What use do you make of information available on grade distributions?
 Is there information available about grade distributions?

7. What is your unit’s practice with respect to peer evaluation of classes taught by non-tenure-track instructional faculty and adjuncts?
 All instructors below the rank of full professor undergo regular peer evaluation of teaching.

8. What is your biggest concern about your undergraduate program?
 Money.
II. Graduate Programs

1. Would your department/program be improved by increasing or decreasing the size of your current graduate program(s)? If so, explain briefly.

 No.

2. If your unit engages in any specialized recruiting activities for graduate students (either in general or with a focus on diversity), please describe them briefly.

 We have a small endowment to help with recruiting.

3. Please provide specific examples of graduate student involvement in faculty research, scholarship, or other creative endeavors. Does your unit take any special measures to encourage this type of engagement?

 All PhD students do original research, some of them also work with faculty as peers.

4. Are there particular gaps in the coursework, research opportunities, or professional training opportunities available to your graduate students?

 No. But more money would be help us take full advantage of what we do have.

5.

6. What is your biggest concern about your graduate programs?

 Money.

III. Research and Creative Activity

1. Briefly describe the availability of external funds to support research or creative activity in your area, and the relative importance of state and federal governments, corporations, foundations, industry, and private gifts as funding sources for your area.

 NSF, NSA.

2.

3.
4. What are some examples illustrating distinction in research or creative activities by your faculty?

Despite our small size we are a tier I research math department.

5.

IV. Faculty

1. What goals and criteria have guided faculty hiring in your academic unit in recent years?

Quality.

2. Can you provide examples, as indicated by academic or personal experience, of international expertise within your faculty?

Approximately two-thirds of our tenure track faculty members are foreign nationals or naturalized citizens.

3. To the extent that your faculty is internationally diverse, is it largely an intentional result or a by-product of pursuing other hiring, promotion, and retention priorities?

Please refer to IV.1.

4. Does your academic unit have a statement of expectations for promotion and tenure in addition to that provided in the faculty handbook? If so, please include the statement with your response.

No.

5. How do you communicate performance expectations to new hires?

Annual evaluation, peer mentoring and department head mentoring.

6. What criteria does your academic unit use in allocating merit pay? Please describe or, if you have written criteria or guidelines, please provide a copy.

Merit. Please see attachment Math1.pdf.

7. What strategies has your academic unit employed to deal with salary compression and to retain excellent faculty.

Short-term differential teaching loads.
8. How successful is your unit in complying with university policy on annual and third-year evaluations of non-tenured faculty ([Faculty Guide to Promotion and Tenure - Evaluation](http://policies.uoregon.edu/ch3t.html)) and post-tenure review (http://policies.uoregon.edu/ch3t.html)? What difficulties have you encountered, if any?

We comply fully with University policy and do not find it overly burdensome.

9. Does your academic unit require faculty activity reports on a regular basis? If so, briefly describe the reporting cycle, the activities reported (or attach an illustration) and the use made of the reports.

We require yearly updates to CV’s.

V. Governance

1. Does your department have a formal committee structure? If so, describe briefly. E.g., an executive committee or an advisory committee to the department head, a personnel committee, a curricular committee, an undergraduate program committee.

2. What weight is placed on service in your department’s reward structure, and does your department compensate faculty for unusually heavy service or administrative assignments through course releases, stipends, or other mechanisms?

Yes. Please see attachment Math2.pdf.

VI. Financial Survival Strategies

1. What decentralized strategies – college or department level -- for raising revenue to support research and teaching have been most successful for your academic unit?

Summer session dividends. ICC.

2. How have you used those revenues to support teaching, research, and service activities in your academic unit?

GTFs.
VII. Information Resources and Technology

Answers in this section were elicited directly from six faculty, Professors (a) through (f).

1. What teaching methods do your faculty find effective when using information technology in teaching, and in what ways do they find the methods effective?

(a) Internet is used to assign the homework problems, post course syllabi and other useful course information such as solutions to test and homework problems. All of this is very effective. We will experiment with automated homework grading systems but it remains to be seen how effective that is.

(b) I try to avoid it.

(c) Running course websites is effective. I post homework, exam solutions, and other additional information. Answering _limited_ amounts of students' email is effective. (Even in Math 243, I have not had much of the kind of email complained about in the recent _Emerald_ article on the subject.) Emailing exams to Disability Services and the athletic department is effective.

In some course (example: Math 457, but also Math 251 and Math 252), it is very useful to have Mathematica or something similar on a computer in the classroom, for the purpose of demonstrations. This is obvious for Math 457 (discrete dynamical systems), but one can also make nice demonstrations of limits, derivatives, etc. that are much better than can be drawn on the board (zooming in repeatedly, or other tactics). For me, it is essential that I be able to modify or create these in the classroom in response to questions, so preprepared transparencies of presentations are not a very good substitute.

(d) I find email useful for communicating with students. Mostly when I have an announcement I need to share with the class, but also to answer questions which come up about class material, primarily homework.

I find the web useful to distribute homework assignments and to make solutions to homework available to the students.

I have experimented once with computer marked homework, and found that to be useful (that is the only course I taught where I had numerous questions and answers going on by email about course material).

For large classes, I've found it useful to write my lecture notes on a computer and display them on a projector in the classroom.

For almost all classes I teach I use (in some classes just occasionally, in other classes much more frequently) some mathematics software for certain kinds of calculations or illustrations.
(e) It is sometimes useful to be able to work through an interactive example with a class, using a computer to do the (occasionally hard) calculations that come up.

(f) Occasionally I like to give some examples in Mathematica to illustrate to students how calculations can be done by a computer.

2. What are the information technology resources or services that you would most like the university to provide to support your teaching or research work?

(a) Electronic subscription to as many journals as possible, especially Mathematical Reviews.

(b) On-line journal access.

(c) More aggressive spam blocking: "quasilegitimate" spammers, like used textbook buyers, new (or old) journals, scientific supply companies, textbook publishers, etc. who send bulk unsolicited email to the University (or even just one department in the University) should get their email blocked. This is not now being done. One can easily imagine this type of spam in a few years time becoming bad enough to seriously interfere with email usability even in the absence of any other spam. The time to stop it is _now_, before it becomes that level of problem.

I want access online to as large a portion of the significant research literature as possible, from on campus, off campus, and far from campus. I want to be able to get it _without_ having to expose my web browser to such online hazards as JavaScript and invasions of privacy such as cookies. Similarly, the Interlibrary Loan setup needs to be fixed so that it works with all browsers (including lynx) and without requiring JavaScript.

The university needs a policy to the effect that all official email I am supposed to read is in 7 bit ASCII plain text (which is readable on _every_ computer system). In cases of extreme need, an open standards format (like pdf) could be acceptable. No html (web page coding), since university employees should not have to expose themselves to web hazards delivered via email in order to read official email. No Microsoft Word documents (_ever_), in fact no proprietary format documents of any kind, since the University should not be dictating to its faculty that they must use hazardous and bloated software which does not permit archival such as Microsoft Word (or even any particular software, whether hazardous or not).

Generally, the University needs to take the security and privacy of its computer using faculty more seriously.

(d) Internet access. Electronic journal access

(e) For teaching: Projectors in classrooms that display the output of a laptop computer, as well as internet access from the classrooms.
Software such as Mathematica, Matlab, Maple.
For research: MathSci, Macaulay2.

(f) I think that electronic access to the journals is the most important aspect helping me in research. Otherwise, I don't have other requests.

3. How do you utilize information technology resources in keeping up in your own academic discipline?

(a) Preprint servers are indispensable.

(b) MathSciNet, ArXiv and on-line journal access, daily.

(c) Sharing preprints via email.

Mathematical discussions via email, including collaboration in which drafts of a paper are sent back and forth between several authors.

Preprint servers, especially "http://arxiv.org".

Journal web sites, for electronic versions of papers I want fast and don't have.

Electronic Math Reviews.

Electronic files, taken with me on trips when I do not have library access. (They take up much less physical space than paper, even though they are more awkward to read.)

(d) Mailing lists, email and electronic journal access.

(e) Online preprint archives, online announcements for conferences, email communication with coauthors.

(f) Again, the access to electronic journals, preprint servers, and electronic exchanges of manuscripts is how I keep up informed about progress in my area.

4. Are Library resources and services adequate to support your needs, and are you able to access these resources easily from off campus?

(a) Adequate.

(b) Yes (though I often wish I could access more back issues of old
journals housed in the library electronically) and Yes.

(c) No, in one important respect: Interlibrary loan, because the system was designed without regard to computer security, does not work without JavaScript and on some browsers. Similarly, the otherwise potentially useful "find full text" buttons that show up on some Math Reviews pages don't work without JavaScript. There is no reason they system that does this couldn't have been designed to produce an ordinary web page; the people who did it just didn't care about user security and therefore didn't bother to do so.

(d) Adequate? Yes, at the moment.

The failure of the journal budget to keep up with inflation while the cost of journals exceeds inflation is frightening. So far this has not been a problem for me, but it seems to be only a matter of time, and not very much time.

(e) Yes in most cases. The only exception I can think of is that our electronic access to Duke Math Jour. has never worked, despite various attempts by the librarians at getting it set up right.

(f) I think that they are adequate. I tend to work mostly on campus and only occasionally require access to library resources while off campus. I never had any problems with that before.

VIII. Other

1. Is planning in your unit done on a regular cycle or on an “as needed” basis, and what kind of planning has been undertaken since our last accreditation review in 1997?

Obviously both.

2.

3. If your academic unit participates in special initiatives or activities that deliver course content to non-traditional students, would you please provide an example or examples?

We staff, schedule, coordinate and control the curriculum for a suite of mathematics courses offered through the Office of Multicultural Academic Support.

4. Are current university training programs helpful to your classified staff? If so, which ones? If not, what kinds of new training would be helpful?

Current technical training programs are excellent and very useful. Our staff does not want or need any multicultural or diversity training.